
FMEA

(Failure Mode and Effects Analysis)

平成23年3月10日 済生会横浜市東部病院 医療安全管理室 有山ちあき

薬剤関連のインシデント・アクシデント報告

急性期病院である当院では、 薬剤に関する報告が多く、 常に1位、2位を占めている。

今までは、事象発生後に、 RCAや4ラウンド法による 分析を行い、問題点の抽出 と再発防止策を検討してい たが、発生件数に変化がな い状況であったため、新た な取り組みとしてFMEAを 実施した。

FMEAをやってみようと思った理由

注射・点滴、内服薬に関しては、これまでに幾度となく 対策を行いシステムの構築を図ってきたが減らない。

実は"ルールと分かっているのに確認を怠った。" "実施しなかった。" が意外に多い!!

自分たちが行っている注射・点滴、内服投与の作業工 程に潜むリスク、間違いを発見するための最後のチャ ンスと、チャンスを活かせなかった時の影響を見える化 し、意識の変革を目指してみよう!

故障モード影響分析法(FMEA)とは

- システムやプロセスにおける失敗モードをそれが 発生する前に評価し、事前に対策を立てる手法 (産業界では数十年前より導入され、効果を挙げている)
- 品質設計と信頼性設計
- 故障モード(FM)、影響解析(EA)を点数化し、どの工程に危険が潜んでいるか、危険度の大きさを判定し対策を立て、事故防止に役立てる

実施 手順

Step1: 業務工程行程表を作成する

(大分類・小分類・単位業務)

Step2: 故障モード(FM)を抽出する

Step3: FMの発生頻度を評価する

Step4: 基準に基づき影響解析を行う

Step5: 検知難易度の評価をする

Step6: 危険度を評価する

Step7: 優先順位を決める (掛け算の合計の高い順)

Step8:対策の立案・検討・実施

注射業務を例題に、FMEAの 実施手順を考えてみましょう。

Step1:業務工程表

(大分類、小分類の例)

	大分類	小分類	
I	医師の指示	患者同定	
		既往歴確認	
		薬剤選択	
		投与量•投与方法	etc
П	指示受け	指示内容の確認	etc
ш	処方監査	患者氏名同定	
		薬剤選択	
		投与量•投与方法	etc

Step1:業務工程表の作成

(単位業務の例)

大分類 小分類		単位業務			
I医師の	A患者	1 3枚綴りの注射箋を準備する			
指示	同定 	2 IDカードとカルテの照合を行う			
		3 IDカードを押す			
		4 医師名を記載する			
	B既往歴	5 既往歴、現病など患者の状態につい て情報収集する			
	C薬剤	6 注射箋に薬品名を記載する			
	選択 	7 注射薬の規格を記載する			

Step2: 不具合様式(FM)の抽出

- 1. 未実施
 - 1)行えない
 - 2)行わない
- 2. 実施
 - 1)作業者の違反
 - 2)間違える
 - 3)遅れる
 - 4)作業目的が未達成
 - 5)複数回実施

Step2:故障モード(FM)

	大分類	大分類 小分類			単 位 業 務				
I	医師の	Α	患者	1	3枚綴りの注射箋を準備する				
	指示同定				IDカードとカルテの照合を行う				
				3	IDカードを押す				
	_			4	医師名を記載する				
	B既往歴			5	既往歴、現病など患者の状態につい て情報収集する				
	C 薬剤		薬剤	6	注射箋に薬品名を記載する				
	選択			7	注射薬の規格を記載する				

太枠部分の故障モード(FM)を考えてみると・・・

Step2:故障モード(FM)

大分類	小分類	単位業務	エラー			故障モード(FM)	
医師の 指示	既往歴	既往歴、現病など 患者の状態につい て情報収集する	O状態につい は収集する1既往歴、禁忌 薬の確認をし		1	アレルギー薬、禁 忌薬が処方される	
					ない	2	他院で処方されている内服薬の把握ができず、重複処方される
			2	情報収集不 足から現状把 握が不十分	1	患者の症状に合っ た薬剤の処方がさ れない	

Step3~5: 影響解析(EA)

各故障モード(FM)に対して、影響評価を実施

- 1)発生頻度(発生する割合)
- 2)影響度(後の活動、人にどの程度の影響を与えるか)
- 3)検知難易度(どこで発見されるか)
 - 1)~3)を点数化する

Step2:故障モード(FM)

				影響解析(EA)				
	エラー	Å	女障モード(FM)	発生頻度	影響度	検出難易		
1	アレルギー、 既往歴、禁忌 薬の確認をし	1	アレルギー薬、 禁忌薬が処方 される					
	ない	2	他院で処方され ている内服薬の 把握ができず、 重複処方される		の部分を			
2	情報収集不 足から現状把 握が不十分	1	患者の症状に 合った薬剤の処 方がされない					

評価の点数表

発生頻度	影響度	検出難易			
発生する割合が非常に 高い (1回/週程度起こる)	5 点	患者さんの生命に関わる 重大な影響を及ぼす、ま たは莫大な損害に繋がる	10 点	ほぼ発見不可能で事 故に至る	5 点
発生する割合が高い (1回/月程度起こる)	4 点	患者さんに大きな影響 を及ぼす、または大き な損害を及ぼす	8 点	多くの場合、発見できない	4 点
時々発生することがあ る (1回/年程度起こる)	3 点	患者さんに影響を及ぼ す、または後の工程に 大きな影響を及ぼす	6 点	発見可能だが時に発 見できない、発見が遅 れる	3 点
たまに発生するが割合 は低い (1回/2~5年 程度で起る)	2 点	患者さんの影響は小さい、または後の工程に 小さな影響を及ぼす	4 点	多くの場合、発見できる	2 点
ほとんど発生しそうもない (1回/5年以上 程度で起こる)	1 点	患者さんへの影響がほ とんどなく気がつかな い程度	2 点	実施時に発見できる	1 点

Step6: 危険度の評価

	+ =_		 故障モード(FM)	影	危険度			
エラー			以停 ^{七一} 下(FIVI)	発生頻度	影響度	検出難易	心	
1	アレルギー、既往歴、禁	·歴、禁 1	アレルギー薬、禁忌薬 が処方される		2	6	2	36
	忌薬の確認 をしない	2	他院で処方されている 内服薬の把握ができ ず、重複処方される	2	4	2	16	

危険度=発生頻度×影響度×検知難易度

※高得点ほど危険度が高い

★当院では、危険度の点数、上位5つに対し対策を立案 している

FMEAを実施してみて感じたこと

≪良い点≫

- ①業務工程で起こる不具合(故障モード)を数値化したことで、 危険度をより実感できる。
- ②説得力のある指導として活用できる。
- ③業務を見なおす機会になる。
- ④マニュアルの作成、改善に役立てられる。

≪悪い点、新たな課題≫

危険度上位5つだけでは不十分。上位5つには入らないが 発生頻度が5点のもの、影響度が10点のものに対しては、 事故防止策を検討する必要がある。